Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti.
نویسندگان
چکیده
Exopolysaccharide production by Sinorhizobium meliloti is required for invasion of root nodules on alfalfa and successful establishment of a nitrogen-fixing symbiosis between the two partners. S. meliloti wild-type strain Rm1021 requires production of either succinoglycan, a polymer of repeating octasaccharide subunits, or EPS II, an exopolysaccharide of repeating dimer subunits. The reason for the production of two functional exopolysaccharides is not clear. Earlier reports suggested that low-phosphate conditions stimulate the production of EPS II in Rm1021. We found that phosphate concentrations determine which exopolysaccharide is produced by S. meliloti. The low-phosphate conditions normally found in the soil (1 to 10 microM) stimulate EPS II production, while the high-phosphate conditions inside the nodule (20 to 100 mM) block EPS II synthesis and induce the production of succinoglycan. Interestingly, the EPS II produced by S. meliloti in low-phosphate conditions does not allow the invasion of alfalfa nodules. We propose that this invasion phenotype is due to the lack of the active molecular weight fraction of EPS II required for nodule invasion. An analysis of the function of PhoB in this differential exopolysaccharide production is presented.
منابع مشابه
The novel genes emmABC are associated with exopolysaccharide production, motility, stress adaptation, and symbiosis in Sinorhizobium meliloti.
The nitrogen-fixing symbiont Sinorhizobium meliloti senses and responds to constantly changing environmental conditions as it makes its way through the soil in search of its leguminous plant host, Medicago sativa (alfalfa). As a result, this bacterium regulates various aspects of its physiology in order to respond appropriately to stress, starvation, and competition. For example, exopolysacchar...
متن کاملThe Sinorhizobium meliloti ntrX gene is involved in succinoglycan production, motility, and symbiotic nodulation on alfalfa.
Rhizobia establish a symbiotic relationship with their host legumes to induce the formation of nitrogen-fixing nodules. This process is regulated by many rhizobium regulators, including some two-component regulatory systems (TCSs). NtrY/NtrX, a TCS that was first identified in Azorhizobium caulinodans, is required for free-living nitrogen metabolism and symbiotic nodulation on Sesbania rostrata...
متن کاملRole of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation.
A regulatory network of Sinorhizobium meliloti genes involved in adaptation to iron-limiting conditions and the involvement of the rhizobial iron regulator gene (rirA) were analyzed by mutation and microarray analyses. A constructed S. meliloti rirA mutant exhibited growth defects and enhanced H2O2 sensitivity in the presence of iron, but symbiotic nitrogen fixation was not affected. To identif...
متن کاملEnvironmental Signals and Regulatory Pathways That Influence Exopolysaccharide Production in Rhizobia
Rhizobia are Gram-negative bacteria that can exist either as free-living bacteria or as nitrogen-fixing symbionts inside root nodules of leguminous plants. The composition of the rhizobial outer surface, containing a variety of polysaccharides, plays a significant role in the adaptation of these bacteria in both habitats. Among rhizobial polymers, exopolysaccharide (EPS) is indispensable for th...
متن کاملThe LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression.
Quorum sensing, a population density-dependent mechanism for bacterial communication and gene regulation, plays a crucial role in the symbiosis between alfalfa and its symbiont Sinorhizobium meliloti. The Sin system, one of three quorum sensing systems present in S. meliloti, controls the production of the symbiotically active exopolysaccharide EPS II. Based on DNA microarray data, the Sin syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 182 3 شماره
صفحات -
تاریخ انتشار 2000